
Nonequilibrium fluctuations of an interface under shear

Marine Thiébaud and Thomas Bickel*
CPMOH, Université de Bordeaux and CNRS (UMR 5798), 351 Cours de la Libération, 33405 Talence, France

�Received 28 August 2009; published 22 March 2010�

The steady-state properties of an interface in a stationary Couette flow are addressed within the framework
of fluctuating hydrodynamics. Our study reveals that thermal fluctuations are driven out of equilibrium by an
effective shear rate that differs from the applied one. In agreement with experiments, we find that the mean-
square displacement of the interface is reduced by the flow. We also show that nonequilibrium fluctuations
present a certain degree of universality in the sense that all features of the fluids can be factorized into a single
control parameter. Finally, the results are discussed in the light of recent experimental and numerical studies.
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I. INTRODUCTION

Soft matter systems driven far from equilibrium by a
shear flow manifest striking properties as a result of their
sensitivity to external fields �1�. For instance, hydrodynamics
may either enhance or suppress coarsening processes �2�.
Coupling with the flow can also lead to the emergence of
shear-induced phases that are exclusively out-of-equilibrium
structures �3,4�, whereas spatiotemporal oscillations and
rheochaos are observed in shear-banding systems �5,6�.

Despite substantial progress, a fundamental understanding
of complex fluids under shear remains a challenging ques-
tion. The first reason lies in the nature of the coupling be-
tween structure and flow. Since the local structure of soft
materials is readily reorganized by an external flow, it has in
turn a significant impact on the flow itself. The complexity of
this feedback mechanism makes that most theoretical studies
are based—to a variable extent—on phenomenological mod-
els �1,2�. The second point is that our understanding of non-
equilibrium steady states �NESSs� is yet far from complete.
Recently, there have been several attempts to construct a
unified framework to describe equilibrium and nonequilib-
rium phenomena �7�. In particular, fluctuation theorems �8�
or extended fluctuation-dissipation relations �9� have been
suggested for complex fluids under shear. But these relations
still remain at the conceptual level and the link with
experimental observables—power spectra, correlation
functions—has not been clarified yet.

In this paper, we investigate the statistical properties of a
liquid-liquid interface in a stationary flow. We argue that this
system is sophisticated enough to capture the relevant fea-
tures of NESS but remains simple enough to be addressed
analytically. Applications of this issue might be expected for
instance in microfluidics since interfacial phenomena are in-
evitably enhanced as the size of the system is reduced. Still,
the question of interface fluctuations under shear has re-
ceived only little attention so far. From a fundamental view-
point, equilibrium properties of liquid-liquid interfaces are
now well established �10�, and experimental as well as nu-
merical studies have validated the capillary wave model
down to almost molecular scales �11,12�. This topic has ex-

perienced a renewed interest in recent years with the discov-
ery that phase-separated colloid-polymer mixtures may have
an extremely low interfacial tension �13�. Interface fluctua-
tions can then be analyzed in real time and space using el-
ementary video-microscopy techniques. The versatility of
this method has allowed Derks and collaborators to study the
statistical properties of an interface exposed to a shear flow
�14�. They found that the coupling with the flow leads to a
strong reduction in thermal fluctuations, while the correlation
length increases. But this second point is in disagreement
with recent Monte Carlo simulations of a driven Ising model
�15�, therefore raising the fundamental question of what fea-
tures of interfaces under shear are actually universal.

Statistical fluctuations of an interface are driven by the
random forces that spontaneously occur in the bulk �16�. To
describe nonequilibrium properties, the main issue is thus to
properly account for the coupling between the bulk and the
interface. This can be achieved on the basis of fluctuating
hydrodynamics �FH� �17�. In this approach, the thermal
noise is included at the level of the Navier-Stokes equations.
Solving the hydrodynamics then leads to an effective
Langevin-like equation for the field under study, involving a
stochastic force whose magnitude is known. FH has been
successfully applied to various NESS situations. Experimen-
tal validations have been obtained, e.g., for fluids in a tem-
perature gradient �18�. FH has also proved crucial to quanti-
tatively describe the dewetting dynamics of thin films �19�.
The purpose of this paper is to apply FH to the fluctuations
of an interface under shear.

We shall proceed as follow. In Sec. II, we explain how an
equation of motion for the interface can be obtained from
FH. We show that the distortion of capillary waves by the
flow leads to a mode-coupling equation that is discussed in
Sec. III. This allows us to extract NESS properties under a
stationary flow in Sec. IV. In particular, we find that the
fluctuations are smoothed out by the flow. The results are
then discussed in Sec. V in the light of recent experimental
and numerical data available in the literature. Finally, we
conclude the paper with a short summary of our results. For
the sake of clarity, the details of the algebra are presented in
Appendixes A and D.

II. HYDRODYNAMIC FORMULATION

We first set up a hydrodynamic theory to account for the
coupling between the surface and the bulk. Following the*thomas.bickel@u-bordeaux1.fr
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usual hypothesis of capillary wave theory, we assume the
existence of an intrinsic interface separating two immiscible
fluids. For moderate deformations around the xOy horizontal
plane, the position of the interface can be described by a
single valued function z=h�x ,y , t�. Along this paper, proper-
ties of the upper �respectively, lower� fluid are labeled with
the subscript i=1 �respectively, i=2�. Each phase is
characterized by its mass density �i and its viscosity �i.
We also define �̄= ��1+�2� /2 the mean viscosity and
��=�2−�1�0 the mass density difference. The surface is
further characterized by the interfacial tension � and the cap-
illary length lc=�� / ���g�, with g as the gravitational accel-
eration.

The system is schematically drawn in Fig. 1. The average
position of the interface is z=0. It is confined between two
walls, the thickness of each fluid layer being L1 and L2 with
L=L1+L2. A planar Couette flow is induced by moving the
walls of the shear cell at constant velocity along the x
direction. We define x, y, and z, respectively, as the velocity,
vorticity, and velocity gradient directions. Assuming that the
no-slip condition applies on the walls of the cell, the fluid
velocity v satisfies v�x ,y ,L1�=V1ex and v�x ,y ,−L2�=−V2ex.
The total shear rate is then

�̇ =
�̇1L1 + �̇2L2

L1 + L2
, �1�

where we define �̇i=Vi /Li the shear rate in each phase. With-
out loss of generality, we assume in the following that V1, L1,
V2, and L2 are chosen so that the plane of zero shear coin-
cides with the average position of the interface. Other situa-
tions can be deduced thanks to a Galilean transformation.

The analysis of nonequilibrium effects is performed
within the framework of fluctuating hydrodynamics �17,18�.
Assuming that thermal fluctuations occur in the overdamped
regime of capillary waves �20�, the starting point is the sto-
chastic version of the Stokes equation

�i�
2v − �p + �ig + � · s = 0 , �2�

with v as the velocity field, p as the pressure, and g=−gez.
Equation �2� is solved together with the incompressibility
condition

� · v = 0. �3�

Thermal fluctuations are accounted for through the random
part of the stress tensor s. Its components s�	 �with � ,	=x,
y, or z� are stochastic forces that stem from the microscopic
degrees of freedom of the fluids. Close to equilibrium their
correlations are given by the fluctuation-dissipation theorem,
but such a relation is not expected to hold beyond the regime
of linear response. Here however, we shall take advantage of
the separation of time scales between the collective modes
under study—the fluctuations of the interface—and the mo-
lecular scales of the heat bath—the fluid constituents. The
relaxation of an interface is characterized by the capillary
time 
c=2�̄lc /�; it ranges from 
c�10−4–10−5 s for usual
interfaces in molecular fluids �with �̄�10−3 Pa s and
��102 mN /m� up to 
c�1–10 s for colloidal interfaces
�with ��10−6 mN /m� �14�. On the other hand, a particle of
fluid on either side of the interface diffuses over its own
diameter a on a time scale 
b=�ia

3 / �kBT�. This time scale
ranges from 
b�10−10–10−11 s for molecular fluids, up to

b�10−3 s for colloids with a�100 nm �14�. In both cases
�molecular or colloidal fluids�, 
b happens to be much
smaller than 
c. Since the relevant regime considered in this
work corresponds to �̇
c�1, the applied shear rate is too
small to significantly affect the thermal motion of individual
particles: �̇
b�1. In this small Peclet number limit, the sta-
tistics of the heat bath is not affected by the flow and we can
assume that the stochastic variables have zero mean value
and correlations given by �17,18�

�s�	�r,t�s��	��r�,t��	 = 2kBT�i������		� + ��	��	���


��r − r����t − t�� , �4�

with kB as the Boltzmann’s constant and T as the tempera-
ture.

Equations �2� and �3� are then solved above and below the
interface and the solutions matched with the appropriate
boundary conditions. The latter have to be enforced at the
instantaneous location of the interface z=h�x ,y , t�. Explic-
itly, we need to express the continuity of the velocity

�v�h = 0, �5�

as well as the continuity of the stress

�T�h · n = �n�� · n� , �6�

with the notation �f�z0
= f�z0

+�− f�z0
−�, the limit being taken,

respectively, from above and from below. In Eq. �6�,
T= t+s is the total stress tensor �16,21�. The components of
t read t�	=−p��,	+�i���v	+�	v��, with � ,	=x ,y, or z; the
random part s is defined in Eqs. �2� and �4�. The unit vector
n is normal to the surface, pointing toward the upper fluid. It
depends on the local conformation of the interface �22�

n =
1

�1 + ��h�2
− �xh

− �yh

1
� . �7�

Finally, once the velocity field is fully characterized, an
equation of motion is obtained thanks to the kinematic rela-
tion

FIG. 1. Schematic representation of the system. The unit vector
n is normal to the interface and is pointing toward the upper fluid.
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�th + v� · ��h = vz, �8�

the velocity being evaluated at z=h. In this equation, the
parallel components of a vector field f= �fx , fy , fz� are defined
as f� = �fx , fy�. For the sake of completeness, the derivation of
the boundary conditions �6� and �8� is reminded in
Appendix A.

III. INTERFACE EQUATION

It has been appreciated for a long time that interfacial
fluctuations can be distorted by an external flow �23,24�.
Clearly, the description of this effect requires us to go be-
yond linear response. The derivation of the dispersion rela-
tion for capillary waves has thus to be extended to account
for nonlinear effects. To this aim, we perform a small-
gradient expansion. The different orders are identified by
writing the deformation as h�x ,y , t�=�u�x ,y , t� with
u�x ,y , t��O�1�. Here, � is the dimensionless parameter that
governs the perturbative analysis. It is defined as the ratio
between the thermal roughness of the interface, �kBT /��1/2,
and the in-plane correlation length lc. The small-gradient as-
sumption thus implies that �=�kBT / ��lc

2��1.
We then follow a recursive scheme that has proved its

worth, e.g., in the context of polymer-membrane interactions
�25�. The velocity and pressure fields are expressed as

v = v�0� + �v�1� + �2v�2� + ¯ ,

p = p�0� + �p�1� + �2p�2� + ¯ .

From the linearity of the Stokes equation it can be deduced
that each term of the series obeys Eq. �2�. The coupling
between successive orders originates from the boundary con-
ditions since the latter have to be enforced at the position of
the interface.

The lowest-order term is simply the Couette flow solution
for a planar interface: v�0��r�= �̇1zex if z�0, and
v�0��r�= �̇2zex if z�0.

For n�1, it is expected that the Taylor expansion of the
nth-order field, when evaluated at z=�u�x ,y , t�, involves
contributions of all orders k�n. To be more explicit, con-
sider for instance the velocity field. Up to second order, it is
given by

v��u� = v�0��0� + ��v�1��0� + u�zv
�0��0��

+ �2
v�2��0� + u�zv
�1��0� +

u2

2
�z

2v�0��0�� + ¯ .

�Note that we have only written the z dependence of
v�x ,y ,z , t�.� We proceed likewise for all fields in Eqs.
�5�–�8�. Clearly, the Taylor expansion of the boundary con-
ditions involves several second-order contributions, making
the algebra quite cumbersome. Moreover, the study of the
fluctuations requires us to solve the full three-dimensional
problem. We thus defer the technical details to Appendixes B
and C, and we now focus the discussion on the main out-
comes.

Since the problem is invariant by translation
parallel to the horizontal plane, it is natural to switch

to the two-dimensional �2D� Fourier representation
h�q , t�=�d2r exp�−iq ·r�h�r , t�, with r= �x ,y� and
q= �qx ,qy�. We also define the norm of the wave vector
q= �q�= �qx

2+qy
2�1/2. After some algebra, we find that the

relaxation of a fluctuation mode with wave vector q follows
a mode-coupling equation

�th = −
1


q
h�q,t� − i�̇ef f� d2k

�2��2kxh�k,t�h�q − k,t� + ��q,t� .

�9�

This equation constitutes the first main result of this paper. It
involves a number of contributions that we now discuss.
First, 
q=4�̄q / ���q2+ lc

−2�� is the equilibrium relaxation time
of the interface. This result shows that there is no direct
coupling with the flow at linear order �at least in the viscous
regime�. Advection of the deformation is a nonlinear effect.
It takes the form of a convolution between all modes with an
effective shear rate

�̇ef f =
�1�̇1 + �2�̇2

�1 + �2
. �10�

Note that the second-order contribution does not depend on
the elastic properties of the interface.

The special feature of Eqs. �9� and �10� is that the effec-
tive shear rate �̇ef f felt by the interface differs from the ap-
plied shear rate �̇ defined in Eq. �1�. Although the latter is set
by the geometry of the system, the former is a dynamical
quantity in the sense that it depends on the viscosities of both
fluids. However, �̇ef f and �̇ cannot be tuned independently
since the continuity condition �6� for tangential forces re-
quires �1�̇1=�2�̇2 �see Appendix B� and then

�L1

�1
+

L2

�2
��̇ef f =

L

�̄
�̇ . �11�

This relation implies that the effective shear rate can in prin-
ciple be tuned in the range 0��̇ef f �2�̇ by adjusting the
experimental conditions. It is only when �1=�2 that both
shear rates coincide.

Thermal fluctuations are accounted for through the white
noise ��q , t�. This contribution stems from the random part
of the stress tensor �see Appendix C�. We find that ��q , t�
simply follows the equilibrium distribution with zero mean
value and

���q,t���q�,t��	 =
kBT

2�̄q
��t − t���2��2��q + q�� . �12�

Even though the system is driven far from equilibrium, there
is no coupling between the noise and the external flow �at
least up to O��2�� �26�.

At this point, it should be mentioned that corrections simi-
lar to Eq. �9� have been suggested in the context of sheared
smectic phases �see �27� and references therein� or in the
description of coarsening under shear �28,29�. The argument
commonly invoked is the following. Since the deformation
h�x ,y , t� is dragged along the x direction by the external flow
v�0�=v�0�ex, the time derivative involved in the equation of
motion can simply be replaced by the total derivative
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�th → �th + v�0��xh ,

where v�0� is evaluated at z=h. Of course if the slope of the
velocity is continuous, i.e., if �1=�2, there is no ambiguity:
the total derivative then reads as �th+ �̇h�xh, yielding to the
convolution integral in Fourier space. However, the situation
is more subtle when �1��2. With the same argument, the
velocity evaluated at z=h would be v�0�= �̇1h if h�0,
whereas it would take the value v�0�= �̇2h if h�0. Clearly,
there is an inconsistency in the reasoning. The only way to
remove the indeterminacy is to follow the procedure detailed
in Appendix B. We emphasize in particular that the various
second-order contributions in Eqs. �5�–�8� are all equally im-
portant to give the perfectly symmetric relation Eq. �10�.

IV. NONEQUILIBRIUM FLUCTUATIONS

NESS properties of the interface are then extracted from
the equation of motion �9� together with the noise correla-
tions �Eq. �12��. Actually, our study reveals that the steady-
state properties of the system are governed by the dimension-
less parameter

� =�kBT

�lc
2 
 �̇ef f
c. �13�

But since Eq. �9� is only valid up to O��2�, the correlation
functions can only be evaluated only up to O��2� in order to
stay consistent. We are thus forced to restrict the discussion
to moderate shear rates although it does not mean that �̇
c
should remain small. Indeed, depending on experimental
conditions, � can be small even if �̇
c is not �30�. The analy-
sis presented in the following is valid in the range
0���1 �31�.

Equation �9� is then solved using the perturbation theory
presented in Appendix D. We first discuss the steady-state
correlation function S�q , �̇� defined as

lim
t→�

�h�q,t�h�q�,t�	 = S�q,�̇��2��2��q + q�� . �14�

It is given at equilibrium by S�q ,0�=kBT / ���q2+ lc
−2��. Un-

der shear, the spectrum is modified according to

S�q,�̇� = S�q,0��1 − �2I�qlc�cos2 �q + O��4�� , �15�

with �q as the angle between the direction of shear ex and the
wave vector q. The function I�qlc� depends only on the
norm q= �q� of the wave vector. Explicitly, we get

I�x� =
1

�2� d2s cos �s
x2s

�x − s�f��x − s��



�xf�x��−1 − �sf�s��−1

f�x� + f�s� + f��x − s��
, �16�

with x= �x�, s= �s�, �s as the angle between x and s, and
f�x�= �1+x2� /x. This integral cannot be evaluated analyti-
cally; the result of the numerical integration is presented in
the inset of Fig. 2 �32�.

Equation �15� is the second main result of this paper. It
shows that the coupling is maximum in the flow direction

��q=0�, while the spectrum is not affected in the vorticity
direction ��q= �

2 �. As expected, the result is invariant by in-
version symmetry qx↔−qx or qy↔−qy. The correction
�S�q , �̇�= �S�q , �̇�−S�q ,0�� is plotted in Fig. 2 in dimension-
less units. It should be noticed that even though all the wave-
lengths are affected by the flow, the spectrum is mostly af-
fected when q� lc

−1. The correction then vanishes like q−2 for
larger values of q, whereas it scales as �S�q , �̇��q4 in the
limit q→0.

The mean-square displacement of the interface is
then obtained from the sum over all modes �h2	��̇�
= �2��−2�S�q , �̇�qdqd�q. Notice that the integral that defines
the roughness at equilibrium is actually divergent. Regular-
ization is achieved by means of a microscopic cutoff a so
that �h2	�0�=kBT / �2���
 ln�lc /a�. In NESS, we find that
the fluctuations are reduced by the external flow

�h2	��̇� = �h2	�0��1 − K�2 + O��4�� . �17�

The correction is quadratic in the control parameter �. In this
expression, K is a universal constant in the sense that it de-
pends neither on the properties of the fluids nor of the elastic
constants of the interface �33�. Moreover, it is independent of
the microscopic cutoff as soon as a / lc�10−2. Numerically,
we get K�0.087.

Finally, we focus our attention on the NESS correlation
function C�r , �̇�= �h�r , t�h�0 , t�	, which is the Fourier trans-
form of the structure factor. As can be seen in Eq. �15�, the
spectrum S�q , �̇� is not modified for the modes that are per-
pendicular to the flow �i.e., wave vectors with qx=0�. How-
ever, performing the sum over all wave vectors gives rise, in
direct space, to modifications even in the vorticity direction.
Denoting � the angle between the direction of shear ex and
the position vector r, the correlation function reads as

C�r,�̇� =
kBT

2��
�K0�r/lc� − �2 cos2 �Cx�r/lc�

− �2 sin2 �Cy�r/lc�� , �18�

with K0 as the modified Bessel function of the second kind.
The corrections can be written Cx�x�=C1�x�−C2�x� /x and
Cy�x�=C2�x� /x, where for i=1,2
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FIG. 2. Correction to the nonequilibrium fluctuation spectrum

�S̃�q , �̇�=� / �kBTlc
2�
�S�q , �̇�, in the direction of shear �q=0 and

for �=1. In inset we show I�qlc�.
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Ci�x� = �
0

�

ds
Ji−1�sx�
1 + s2 I�s�s2−i. �19�

Here, Jn is the Bessel function of the first kind.
At equilibrium, C�r ,0� is proportional to K0�r / lc� and be-

haves like C�r ,0��exp�−r / lc� at large separations r� lc. In
other words the capillary length is also the equilibrium cor-
relation length. In nonequilibrium situation, the correlation
function presents a number of interesting features. First, we
notice that the correlation function is hardly affected at short
distances �up to r� lc� —at least for values of the shear rate
corresponding to ��1. At larger distances, features are dif-
ferent depending on the angle �. Consider for instance the
direction of shear �=0. It clearly appears from Fig. 3�a� that
C�r , �̇� decays faster that its equilibrium counterpart. This
reflects a decrease in the correlation length as the control
parameter � is increased. The situation is different in the
vorticity direction �=� /2, as shown on Fig. 3�b�. In this
case the decay of C�r , �̇� is slower than the equilibrium cor-
relation function, indicating an increase in the correlation
length with increasing shear rate.

Since we do not have an explicit functional form of the
correlation function, it is difficult to be more quantitative
regarding the correlation length. The only conclusion that
can be drawn from Fig. 3 is that the decay of C�r , �̇� at large
distances is not exponential anymore. Finally note that at
intermediate angles �0���� /2�, the correlation length can

be either larger or smaller than lc depending on the shear
rate.

V. DISCUSSION

Complex fluids under shear is a challenging class of non-
equilibrium systems. The simple system considered in this
work is a fluid interface exposed to a Couette flow. First, it is
shown that the time evolution of the deformation satisfies a
mode-coupling equation. Equations similar to Eq. �9� have
already been suggested in the context of soft surfaces under
shear �see, for instance, �27–29��. As a matter of fact, it be-
longs to the general class of the Kardar-Parisi-Zhang equa-
tion �34� whose derivation is usually based on phenomeno-
logical grounds. Here however, Eq. �9� has been rigorously
derived from hydrodynamics with no other assumption that
inertial effects can be neglected.

Our analysis reveals that NESS fluctuations are controlled
by the dimensionless parameter �= �kBT / ��lc

2��1/2
�̇ef f
c.
This definition in terms of lc and 
c is natural in the case of
colloidal fluids, for which gravitational effects are important.
Note that this scaling was already recognized in the experi-
mental study of Derks et al. �see Fig. 4 in Ref. �14��. But it
is natural to wonder whether our theory applies to molecular
fluids, for which overdamped wavelengths are orders of
magnitude smaller than the capillary length. The point is that
� does not explicitly depend on the capillary length since,
from the definition of lc and 
c, it can also be written as

� = 2�̄�̇ef f
�kBT�1/2

�3/2 . �20�

Therefore, � is always the appropriate parameter to describe
nonequilibrium fluctuations even if lc and 
c may not be the
relevant length and time scales.

To get more insight into the physical meaning of the con-
trol parameter, we can relate � to dimensionless numbers
usually invoked in fluid dynamics. Recall that the typical
amplitude of �equilibrium� thermal capillary waves is given
by �� �kBT /��1/2. The control parameter can then be ex-
pressed as a Peclet number: �= �̇ef f
�, with 
���̄�3 / �kBT� as
the diffusion relaxation time associated with the length scale
�. Another interpretation can be given in terms of capillary
number: �= �̄V� /�, with V���̇ef f�. From this viewpoint, �
can be understood as the ratio between the flow advection
velocity V� and the damping velocity of capillary waves
� / �̄.

We now discuss the results in view of recent studies.

A. Comparison to experiments and simulations

We have shown that interfacial fluctuations are reduced
by the flow. According to Eq. �17�, the reduction is governed
by a universal parameter: we predict K�0.087. Suppression
of thermal capillary waves was indeed measured by Derks
and collaborators in a recent experiment �14,35�. This was
achieved by using a phase-separated colloid-polymer mix-
ture whose interface is characterized by a very low surface
tension. The authors have used two compositions but the
dynamical parameters are only available for the first sample
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FIG. 3. Dimensionless correlation function 2�� / �kBT�

C�r , �̇� for different values of the control parameter: �=0 �solid
line�, �=0.5 �dot�, �=0.8 �dash-dot�, and �=1 �dash-dot-dot�. �a�
In the direction of shear ��=0�, the correlation length decreases. �b�
In the vorticity direction ��=� /2�, the correlation length increases.
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�sample A, very close to the critical point�. The thickness of
the fluid layers are L1=50 �m and L2=350 �m. Equilib-
rium parameters obtained from the correlation functions are
�=2.5 nN /m, lc=2.6 �m, and 
c=13 s �14�. The viscosi-
ties extracted from the velocity profiles are �1=7.8 mPa s
and �2=5.2 mPa s�35�. Unfortunately, there are only two
experimental points �out of six� that correspond to the con-
dition ��1. To fit the data for higher values of the control
parameter, we assume that Eq. �17� can be extended accord-
ing to

�h2	��̇� � �h2	�0�
1

1 + K�2 . �21�

We then perform a linear regression of the quantity
�h2	�0� / �h2	��̇� as a function of �2. We find Kfit�0.246,
almost three times the expected value. The comparison be-
tween our theoretical predictions and the experimental mea-
surements is shown on Fig. 4. As can be seen the agreement
is only qualitative, even though it is difficult to be really
conclusive since most data are outside the validity range of
Eq. �17� �36�.

In Ref. �14�, the suppression of thermal capillary waves is
supported by a remarkably simple model. The authors state
that only the slow modes with �̇
q�1 are affected by the
flow. Solving this inequality defines to two wave vectors q1
and q2. It is then assumed that wave vectors with
q1�q�q2 no longer contribute to the fluctuation spectrum,
whereas the contribution from wave vectors outside this
range is left unchanged. Their prediction of the interfacial
roughness as a function of the applied shear rate �̇ is in very
good agreement with experimental data—see Fig. 4. Still, we
argue that the hydrodynamic analysis presented in this paper
provides insights into the problem. In particular, we have
shown that fluctuations are driven out of equilibrium by the
effective shear rate �̇ef f rather than the applied shear rate �̇.
For sample A presented above, the ratio of effective to ap-
plied shear rate is �̇ef f / �̇�0.8. Now, suppose that the experi-
ment is done with the same sample composition excepted
that the thicknesses of the fluid layers are inverted to

L1=350 �m and L2=50 �m. In this case, the ratio would
be �̇ef f / �̇�1.2: for the same value of the applied shear rate,
� is thus expected to increase by 50%. The ensuing differ-
ence regarding the mean-square displacement should be sub-
stantial enough for the distinction between applied and effec-
tive shear rate to be experimentally observed. This would
provide a direct validation of our analysis.

Finally, let us discuss the correlation functions. Our study
reveals that the static structure factor is modified in the flow
direction, whereas fluctuation modes in the vorticity direc-
tion are not affected. This result confirms similar conclusions
obtained from molecular-dynamics simulations �37�. Coming
back in real space, we find that the correlation length de-
creases in the direction of shear. This conclusion agrees with
Monte Carlo simulations of a driven interface �15�. Physi-
cally, it would mean that the external flow acts as an effec-
tive potential whose strength should increase with the shear
rate. However, these findings are in disagreement with the
results of Derks et al. that observe an increase in the corre-
lation length �14�. In their work, experimental data are fitted
using the equilibrium correlation function: the procedure is
thus based on the short distance behavior of C�r , �̇�. In con-
trast, our conclusions are drawn from the asymptotic behav-
ior of the correlation function. Note however that the short-
range exponential decay of the correlation function is not
expected to be affected by the flow at moderate shear rate, as
observed experimentally �see Fig. 4�b� in Ref. �14��. It is
thus possible that the discrepancy comes from how the cor-
relation length is defined in practice. Other possibilities are
discussed below.

B. Conjectures and future directions

The equation of motion �9� is a direct generalization of
the dispersion relation for capillary waves. In particular, it is
based on the same assumptions: continuum hydrodynamics
and small-gradient expansion. The pertinent question is
whether the apparent mismatch between theoretical predic-
tions and experimental data can be the consequence of an-
other mechanism �38�. In fact, several explanations are plau-
sible.

First, we remark that the diameter of the colloids is of the
order of 140 nm. The capillary length is thus only 10 or 20
times larger than the “microscopic” cutoff, and it is not clear
whether the separation of length scales assumed to get the
universal quantities �K ,I , . . .� is really achieved for this
sample.

Second, Monte Carlo simulations of Smith et al. reveals
that the average width of the interface is significantly re-
duced by the flow �15�. In the capillary wave theory, it is
assumed that the density profile behaves like a step function
with a strictly vanishing width. But it is known that physical
parameters are directly related to the shape of the true den-
sity profile �39�. For instance, the surface tension is given by

� = m� dz� ��

�z
�2

, �22�

with ��z ,0� as the equilibrium profile and m as a constant
proportional to the second moment of the intermolecular po-
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FIG. 4. Mean-square displacement of the interface a function of
the control parameter �. The solid circles refer to the experiment of
Ref. �14� �sample A�. The dotted and solid lines are the theoretical
predictions of Eqs. �17� and �21�, respectively, with Ktheo�0.087.
The dashed line corresponds to the fit of Eq. �21� with
Kfit�0.246. The dash-dotted line is the model of Derks et al. �14�.
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tential �39�. In the small but finite interfacial region, the den-
sity is varying rapidly so that the fluids are highly compress-
ible. The density should therefore be modified by the flow
and become a function of the applied shear rate ��z , �̇�. A
plausible consequence is that the bare surface tension might
depend on �̇ as well. According to Eq. �22�, the thinning of
the average profile observed in �15� is expected to give rise
to an increase in the surface tension and then to an additional
reduction in the fluctuations.

The latter assertion is certainly hypothetical but we argue
that the measurement of the correlation function in the vor-
ticity direction could be conclusive. Indeed, an increase in
the bare surface tension would lead to an increase in lc and
thus of the NESS correlation length. But a modification of
C�r , �̇� arising from ���̇� is expected to be isotropic,
whereas the hydrodynamic theory predicts a modification
that is anisotropic. This question clearly deserves to be re-
considered both from the experimental and theoretical view-
point.

VI. CONCLUSION

Let us briefly summarize the main results of this paper.
�i� We have generalized the hydrodynamic derivation of

the dispersion relation to include the effect of an applied
shear rate on the dynamics of capillary waves. Equation �9�
reveals that the system is driven out of equilibrium by an
effective shear rate that differs from the applied one. The
mode-coupling structure of the equation also shows that non-
equilibrium fluctuations cannot be described in terms of a
simple renormalization of the interfacial tension.

�ii� The analysis of the mode-coupling equation shows
that the fluctuations are smoothed out by the flow, in quali-
tative agreement with experiments and simulations. How-
ever, the predicted effect is smaller than what is actually
observed on the experimental side �38�. The discrepancy
might be due to the finite thickness of the interfacial region
and its response to the external flow. Molecular-dynamics
simulations of interfaces under shear should help to clarify
this point in a near future.

In conclusion, we have derived a hydrodynamic theory to
account for the coupling between a shear flow and the fluc-
tuations of an interface. Previous investigations on driven
interfaces have revealed partial agreements but also signifi-
cant discrepancies between experiments and numerical simu-
lations. Although our work brings insights into the issue, it
seems that further investigations will be necessary to defi-
nitely reconcile experiment, theory, and simulations. Ulti-
mately, achievement of this program should allow us to reach
a deeper understanding of soft matter systems under shear.
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APPENDIX A: DERIVATION OF THE BOUNDARY
CONDITIONS

Since the analysis presented in this work involves nonlin-
ear contributions, particular care has to be given to the con-
ditions at the interface. In this appendix, we first remind the
derivation of the kinematic relation Eq. �8�. We then focus on
the stress continuity condition Eq. �6�.

1. Kinematic condition

It is convenient to represent the interface with the func-
tional f�x ,y ,z , t�=z−h�x ,y , t�. The unit vector n normal to
the surface is given by

n =
�f

��f �
. �A1�

Let us focus on a point M�x ,y ,z� that belongs to the inter-
face. It satisfies f�x ,y ,z , t�=0 and then

df = �t fdt + �f · dr = 0.

If w is the velocity of the point M, the infinitesimal displace-
ment reads as dr=wdt and therefore �f ·w=−�t f . Together
with Eq. �A1�, we then obtain

w · n = −
�t f

��f �
.

Identifying the normal velocity of the interface w ·n with the
normal velocity of the fluid v ·n, one finally gets

�th
�1 + ��h�2

= v · n . �A2�

Here, we have also used the fact that �t f =−�th. This relation
together with definition �7� directly leads to Eq. �8�.

2. Dynamical condition

To derive the stress condition �Eq. �6��, we consider an
infinitesimal surface element S of the interface bound by a
closed contour C. The contour is chosen circular with radius
�. We also define a small cylinder V, centered on the contour
C and with height 2�. The forces acting on the volume ele-
ment V are the body force density f, the tension force exerted
along the perimeter C, and the surface force exerted by the
fluids above and below the cylinder. We discuss separately
each contribution.

a. Tension force

We first discuss the restoring force exerted on the contour
line C. We assume that the contour is traveled counterclock-
wise. The �local� orthonormal basis associated with the line
is denoted �m ,s ,n�, with m as the tangent vector, s as the
vector normal to C but tangent to S, and n as the vector
normal to S pointing toward the upper fluid. In this represen-
tation, the external force exerted on the contour C reads as

Ft = −� �sdl = �� �m 
 n�dl = �� �dl 
 n� ,

with dl=mdl. Then, according to the Stokes relation �dl

A=��dS
��
A, one gets
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Ft = �� dS�n 
 �� 
 n ,

with the surface element dS=dSn.
Finally, using the general identity �A
��
A

= 1
2 � �A ·A�−A�� ·A� and because n ·n=1, we find

Ft = − �� dS�� · n�n . �A3�

b. Surface force

The component T�	 of the stress tensor T corresponds the
�th component of the force �per unit area� acting on a sur-
face element normal to the direction 	. In particular, the
force density exerted by a fluid on a surface element with
outward normal n̂ is T · n̂.

Let us apply this definition to the elementary cylinder of
volume V. The cylinder is sitting across the surface, the ex-
tension being � on each side. Regarding the upper surface of
the cylinder, the stress exerted by fluid 1 is characterized by
the �outside� normal vector n̂1=n so that the force density
reads T1 ·n. Similarly on the lower surface one has n̂2=−n
and the stress is −T2 ·n. The total surface force is then

Fs =� dS�T1 − T2� · n . �A4�

c. Force balance equation

The force balance on the volume element V enclosing the
surface S defined by the contour C then reads

�
V

dV�
dv

dt
= Fs + Ft + �

V
dVf .

Now if � is the typical length scale of the volume element V,
then the surface contributions scale as �2 whereas the accel-
eration and the body forces scale as �3. Hence in the limit
�→0 the latter can be neglected and surface forces must
balance. However, since the surface element is arbitrary, the
integrand must vanish identically so that one finally gets the
desired result

�T1 − T2� · n = ��� · n�n . �A5�

Finally notice that the divergence of the normal vector reads
in the Monge representation �22�

� · n = − �2h + O�h3� . �A6�

APPENDIX B: NONLINEAR RELAXATION
EQUATION

The aim of this section is to derive the equation of motion
�9�. The fluctuation modes of the interface are expected to be
deformed by the shear flow. As we shall see, the description
of this effect requires us to go beyond the usual linear analy-
sis. We focus here on the relaxation dynamics in the absence
of noise. Thermal fluctuations are treated in Appendix C.

To begin with, we recall the Stokes equation

�i�
2v − �p + �ig = 0 , �B1�

with g=−gez as the gravitational acceleration. In the small-
gradient approximation, we can express the deformation pro-
file as h�x ,y , t�=�u�x ,y , t� with u�x ,y , t��O�1�. The dimen-
sionless parameter that governs the small-gradient expansion
is

� =�kBT

�lc
2 . �B2�

We then assume that the fields that satisfy the Stokes equa-
tion can be expanded in powers of �

F�z� = F�0��z� + �F�1��z� + �2F�2��z� + O��3� , �B3�

where F stands for v, t, or p. �For clarity reason, only the z
dependence of the fields is kept explicitly in this appendix.�
The solution at order �0 satisfies Eq. �B1�; it corresponds to
the Couette flow solution for a flat interface. The other terms
of expansion �B3� are solution of the following equation:

�i�
2v�n� − �p�n� = 0, ∀ n � 1. �B4�

At order �1, the solution in the absence of shear would lead
to the usual dispersion relation for capillary waves. Here, the
calculations are carried out up to order �2.

Due to the linearity of Eq. �B4�, the coupling between
different orders only occurs through the boundary conditions
at the interface. This suggests us to use a recursive method in
order to solve the problem �25�.

1. Solution at order ε0: Flat interface

For a flat interface, the solution is the well-known solu-
tion for the Couette flow:

v�0��z� = �̇izex, �B5�

p�0��z� = P�0� − �igz , �B6�

with i=1 if z�0 and i=2 if z�0. P�0� is a constant. The
stress tensor then reads as

t�0��z� = 
− p�0��z� 0 �i�̇i

0 − p�0��z� 0

�i�̇i 0 − p�0��z�
� . �B7�

In particular, the continuity relation �Eq. �6�� for the tangen-
tial stress implies �1�̇1=�2�̇2.

Note that we have chosen L1, V1, L2, and V2 so that the
plane of zero shear is the horizontal plane z=0. At constant
shear rate, any other situation can be deduced thanks to a
simple Galilean transformation.

2. Solution at order ε1: Linear relaxation

The first-order solution satisfies Eq. �B4� with boundary
conditions that involve the solution at order �0. Actually,
there are two kinds of conditions that needs to be enforced:
continuity conditions at the interface and limit conditions far
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from the interface. Strictly speaking, the latter have to be
expressed at the boundaries of the shear cell, z→L1 or
z→−L2, where L1 and L2 are macroscopic lengths. In this
work, we are interested on thermal fluctuations that develop
on microscopic length scales �i.e., with wavelength much
smaller than L1 or L2�. We can therefore assume that for any
field F, the terms of the series �Eq. �B3�� with n�1 vanish at
infinity

lim
z→��

F�n��z� = 0, ∀ n � 1. �B8�

In the following, we first derive the boundary conditions at
the interface and then solve the problem in Fourier represen-
tation.

a. Boundary conditions

To express the continuity conditions, let us define for a
field F the notation

�F�z0
= F�z0

+� − F�z0
−� , �B9�

with F�z0
��=limz→z0

F�z�, the limit being taken for z�z0.
The first condition that needs to be enforced is the continuity
of the velocity at the interface

�v�h = 0 .

Using expansion �B3� together with the Taylor expansion of
v�h=�u�, we obtain at first order

�v�1� + u�zv
�0��0 = 0 .

From the result �Eq. �B5�� we get �zv
�0�= �̇iex, and finally

�vx
�1��0 = ��̇2 − �̇1�u , �B10a�

�vy
�1��0 = 0, �B10b�

�vz
�1��0 = 0. �B10c�

Next, we have to enforce the condition of stress continuity
Eq. �6�. At first order, we obtain

�t�z
�1� + u�zt�z

�0��0 = − ��2u��z,

with �=x ,y, or z. Following the result �Eq. �B7�� for the
stress tensor, we find

�zt�z
�0��z� = �ig��z.

The continuity conditions for the stress tensor then reads as

�txz
�1��0 = 0, �B11a�

�tyz
�1��0 = 0, �B11b�

�tzz
�1��0 = ��gu − ��2u , �B11c�

with ��=�2−�1.

b. Method and solution

The solution of the problem is expressed using the two-
dimensional Fourier transform

� F�q,z,t� =� d2r exp�− iq · r�F�r,z,t�

F�r,z,t� =� d2q

�2��2exp�iq · r�F�q,z,t� ,� �B12�

with r= �x ,y� and q= �qx ,qy�. The difficulty of the algebra
comes from the fact that we need to solve the full three-
dimensional problem. It then appears judicious to define an
orthogonal coordinate system that would account for the
symmetries of the problem. To this aim, the vector fields are
decomposed into their longitudinal, transverse, and normal
components �40,41�. This defines a new set of orthogonal
unit vectors �l , t ,ez�, where l is the unit vector parallel to q
and t is the in-plane vector perpendicular to l and ez. These
vectors are expressed in the Cartesian basis �ex ,ey ,ez� as

l =
qx

q
ex +

qy

q
ey ,

t = −
qy

q
ex +

qx

q
ey .

The velocity is then written as v�1�=vl
�1�l+vt

�1�t+vz
�1�ez. In-

serting this expression in Eq. �B4� leads to a system of dif-
ferential equations for the Fourier-transformed quantities

− �iq
2vl

�1� + �i�z
2vl

�1� = iqp�1�, �B13a�

− �iq
2vt

�1� + �i�z
2vt

�1� = 0, �B13b�

− �iq
2vz

�1� + �i�z
2vz

�1� = �zp
�1�, �B13c�

together with the divergenceless condition

iqvl
�1� + �zvz

�1� = 0. �B14�

It is not difficult to show that the solution of Eqs. �B14�
can be written as

vz
�1��z� = Ai

�1�e−q�z� + Bi
�1�qze−q�z�, �B15a�

vt
�1��z� = Ci

�1�e−q�z�, �B15b�

p�1��z� = 2�iBi
�1�qe−q�z�. �B15c�

Ai
�1�, Bi

�1�, and Ci
�1� are the �yet undetermined� integration

constants, the subscript i takes the value i=1 if z�0 and
i=2 if z�0. �There should be a priori no confusion between
the subscript and the imaginary unit i.� The solution for the
longitudinal component follows directly from Eq. �B14�.
Note that condition �B8� has already been taken into account
in Eq. �B15�.

Next, we have to express the boundary conditions Eqs.
�B10� and �B11� in Fourier space and in the new system of
coordinates. Condition �B10c� for the normal component is
straightforward

�vz
�1��0 = 0, �B16�

where of course vz
�1��q ,z , t� now stands for the Fourier trans-

formed quantity. Then projecting conditions �B10a� and
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�B10b� for the parallel components onto the directions l and
t, respectively, gives

�vl
�1��0 =

qx

q
��̇2 − �̇1�u �B17�

and

�vt
�1��0 =

qy

q
��̇1 − �̇2�u . �B18�

Regarding the continuity of the stress, condition �B11c� is
now expressed as

�− p�1� + 2�i�zvz
�1��0 = ��q2 + lc

−2�u , �B19�

where we define the capillary length by lc
2=� / ���g�. Finally,

the projection of Eqs. �B11a� and �B11b� leads to

��i��zvl
�1� + iqvz

�1���0 = 0 �B20�

and

��i�zvt
�1��0 = 0. �B21�

With boundary conditions �B16�–�B21�, we can now
evaluate the six integration constants. We find

A1
�1� = A2

�1� = −
1

4�̄q
��q2 + lc

−2�u , �B22a�

B1
�1� = A1

�1� + i
qx

2�̄q
�̇1��2 − �1�u , �B22b�

B2
�1� = − A2

�1� + i
qx

2�̄q
�̇2��1 − �2�u , �B22c�

C1
�1� =

qy

2�̄q
�̇1��2 − �1�u , �B22d�

C2
�1� =

qy

2�̄q
�̇2��1 − �2�u , �B22e�

with �̄= ��1+�2� /2.
Although the first-order solution already depends on the

shear flow, it is claimed in the main body of the paper that
the calculations have to be performed up to second order. To
understand this point, consider the kinematic condition �8�.
Since v�0��0�=0, we can write up to first order

�th = �vz
�1��0� = −

1


q
h ,

with 
q=4�̄q / ���q2+ lc
−2��. It appears from Eq. �B22a� that

the shear rate is not involved in the equation of motion at
linear order. The calculations have thus to be extended to
include the first nonlinear contribution.

3. Solution at order ε2: Mode-coupling equation

a. General solution

The solution at second order satisfies the same set of lin-
ear differential Eqs. �B14� so that it takes the form

vz
�2��z� = Ai

�2�e−q�z� + Bi
�2�qze−q�z�, �B23a�

vt
�2��z� = Ci

�2�e−q�z�, �B23b�

p�2��z� = 2�iBi
�2�qe−q�z�. �B23c�

Again, vl
�2� is deduced from the incompressibility condition

�B14�.
It appears that not all the integration constants are needed

for our purpose. Indeed, let us express the kinematic condi-
tion �8� up to second order. In direct space, it reads as

��tu + �2u�xu�zvx
�0��0� + �2��u · v�

�1��0�

= �vz
�1��0� + �2u�zvz

�1��0� + �2vz
�2��0� ,

where we have used the fact that v�0��0�=0. Note that the
passage from Eq. �8� to this latter equation leads to an inde-
terminacy. Indeed, although the velocity field v is continuous
at z=h, this is not the case for each term of expansion �B3� at
z=0. In this appendix, we thus assume that the limit z→0 is
taken from above. It can be checked that the same results are
obtained if one would take the limit from below. We now
switch to Fourier space, where the product of two functions
f�r� .g�r� is transformed into the convolution product

�f � g��q� �� d2k

�2��2 f�k�g�q − k� . �B24�

We then have in Fourier representation

��tu = �vz
�1��0� + �2��u � �zvz

�1��0�� − i�̇1�u � qxu�

− i�vx
�1��0� � qxu� − i�vy

�1��0� � qyu�� + �2vz
�2��0� .

With the results of the preceding section, the equation of
motion can now be written as

��tu = −
1


q
�u − i�2�̇1�u � qxu�
�1 − �2

�̄
+ 1� + �2A1

�2�.

�B25�

Therefore, only the integration constant A1
�2� is required to get

the equation of motion.

b. Integration constants

At second order, continuity condition �5� for the z com-
ponent of the velocity is expressed in direct space as


vz
�2� + u�zvz

�1� +
u2

2
�z

2vz
�0��

0
= 0,

leading to, in reciprocal space,

�vz
�2��0 = i��̇2 − �̇1��u � qxu� . �B26�

This relation actually involves both A1
�2� and A2

�2�. To obtain
one last equation, we still need to express the normal stress
condition

�n · t · n�h = − ��2h + O�h3� .

Together with Eqs. �B7�, it reads at order �2
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�tzz
�2� + u�ztzz

�1��0 = 0.

This result is finally expressed in Fourier representation. The
derivative of the stress tensor at first order is then obtained
from Eq. �B13c�

�ztzz
�1� = − �zp

�1� + 2�i�z
2vz

�1�

= �i�q2vz
�1� + �z

2vz
�1��

= �i�q2vz
�1� − iq�zvl

�1�� ,

where we have used Eq. �B14� to get the last equality. From
the continuity relation �B20�, it is not difficult to obtain the
condition

�tzz
�2��0 = 0 �B27�

that leads to the simple relation

�1A1
�2� + �2A2

�2� = 0. �B28�

Inserting this result in Eq. �B26�, we finally get

A1
�2� = i�̇1�u � qxu���1 − �2

2�̄
� , �B29a�

A2
�2� = i�̇2�u � qxu���2 − �1

2�̄
� . �B29b�

If we factorize all second-order contributions in Eq. �B25�,
we then arrive at the equation of motion

�t�u = −
1


q
�u − i

2�1�̇1

�1 + �2
��u � qx�u� . �B30�

Coming back to the deformation field h=�u and using the
fact that �1�̇1=�2�̇2, we can write the equation of motion in
its definitive form Eq. �9�.

APPENDIX C: FLUCTUATING HYDRODYNAMICS

In this appendix, we consider the Landau-Lifshitz equa-
tion of linear fluctuating hydrodynamics �18�. We thus need
to adapt the perturbative scheme developed in Appendix B to
the Stokes Eq. �2� including the random part of the stress
tensor s. To this aim, it should be noticed that the noise
correlations �s�	s��	�	 given in Eq. �4� scale as kBT and are
therefore proportional to �2 �see Eq. �B2��. From this view-
point, the random part of the stress tensor can be identified as
a first-order contribution.

We then follow the same recursive method as in Appendix
B. There is no modification at order �0 and we now discuss
the first and second orders of expansion �B3�.

1. Solution at order ε1

At first order, the stochastic version of the Stokes Eq. �2�
reads as, in the �l , t ,ez� basis,

�i��z
2 − q2�vl

�1� = iqp�1� − iqsll − �zslz, �C1a�

�i��z
2 − q2�vt

�1� = − �zstz, �C1b�

�i��z
2 − q2�vz

�1� = �zp
�1� − iqslz − �zszz, �C1c�

together with the incompressibility condition

iqvl
�1� + �zvz

�1� = 0. �C2�

As explained in the text, the fluctuations of the random
forces in the bulk are not affected by the shear flow �at least
in the regime considered in this paper�. The correlations are
then given by the fluctuation-dissipation theorem �17,18�. In
this representation, we have

�s�	s��	�	 = 2kBT�i������		� + ��	��	���


�2��2��q + q����z − z����t − t�� , �C3�

where the subscripts stand for l, t, or z.
The solution of Eqs. �C1� is then obtained using the fol-

lowing Green’s-function identity �16�:

��z
2 − q2�

1

2q
e−q�z−z�� = − ��z − z�� .

Regarding the boundary conditions, the stress tensor t in Eqs.
�B10� and �B11� has now to be replaced by the total stress
tensor T= t+s �16,21�. After some algebra, we obtain the
evolution equation for the interface

�th�q,t� = −
1


q
h�q,t� + ��q,t� , �C4�

where the noise ��q , t� is given by

��q,t� =
q

4�̄
�

0

+�

dzze−qz�szz − sll + 2islz�

+
q

4�̄
�

−�

0

dzzeqz�szz − sll − 2islz� . �C5�

Together with the correlations �Eq. �C3��, we finally get the
result announced in Eq. �12�. Note that Eq. �C5� generalizes
the result of Grant and Desai for a liquid-gas interface �in the
absence of shear� �16�.

2. Solution at order ε2

At second order, the velocity field satisfies the following
set of equations:

�i��z
2 − q2�vl

�2� = iqp�2�, �C6a�

�i��z
2 − q2�vt

�2� = 0, �C6b�

�i��z
2 − q2�vz

�2� = �zp
�2�, �C6c�

together with the continuity equation

iqvl
�2� + �zvz

�2� = 0. �C7�

The noise enters the problem only through the boundary con-
ditions and the first-order contribution. Again, the boundary
conditions are the same as in Appendix C excepted that the
stress tensor t is replaced by the total stress tensor T= t+s.

The calculations are pretty lengthy so that we only give
the final results. The equation of motion is obtained from the
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kinematic condition Eq. �8�. Up to second order, we find

�th = −
1


q
h − i�̇ef f�h 
 �qxh�� + � − q · ��q�1� 
 h�

− �q 
 ��q�2� 
 h�� · ez, �C8�

where �1 and �2 are defined as

�1�q,t� =
1

4�̄q
�

0

+�

dz�1 − qz�e−qz�szz − sll + 2islz�

+
1

4�̄q
�

−�

0

dz�1 + qz�eqz�szz − sll − 2islz� �C9�

and

�2�q,t� =
1

2�̄q
�

0

+�

dze−qz�slt + istz� +
1

2�̄q
�

−�

0

dzeqz�slt − istz� .

�C10�

It can be noticed that the additional terms involving �1
and �2 are not coupled to the external flow. From Eq. �C3�,
it is not difficult to get the statistical properties of �1 and
�2 : ��1	= ��2	=0 and for �, 	=1, or 2,

����q,t��	�q�,t��	 =
kBT

2�̄q3��t − t���2��2��q + q����	

�C11�

and

����q,t���q�,t��	 = 0. �C12�

APPENDIX D: SOLUTION OF THE MODE-COUPLING
EQUATION

1. Linear noise

Equation �9� is solved using a perturbation theory. To this

aim, let us define the time Fourier transform f̃�q ,�� of any

function f�q , t� as f̃�q ,��=�dt exp�−i�t�f�q , t�. The mode-
coupling equation can then be rewritten

h̃�q,�� = R̃0�q,���̃�q,�� − i�̇ef fR̃0�q,��


� dk� kxh̃�k,��h̃�q − k,� − �� , �D1�

with dk� =d2kd� / �2��3. The bare propagator R̃�q ,�� is
given by

R̃�q,�� =

q

1 + i�
q
. �D2�

The solution of the problem is then obtained as the solution
of a Dyson equation. The calculations are performed up to

second order in the small parameter � �which is proportional

to �̇ef f�. Using the shorthand notation h̃q= h̃�q ,��, we get

h̃q = R̃q�̃q − i�̇ef fR̃q� dk� kxR̃kR̃q−k�̃k�̃q−k

− �̇ef f
2 R̃q� dk� dk� �kxkx�R̃kR̃q−kR̃k�R̃q−k��̃q−k�̃k��̃q−k�

− �̇ef f
2 R̃q� dk� dk� �kxkx�R̃kR̃q−kR̃k�R̃q−k−k��̃k�̃k��̃q−k−k�

+ O��3� , �D3�

From this expansion, the evaluation of the correlation func-

tion �h̃qh̃q�	 is pretty lengthy but presents no conceptual dif-
ficulty since the four-point correlation functions of the noise
are given by the Wick’s theorem. The result is then Fourier-
transformed back in time representation, leading to Eqs. �15�
and �16�.

2. Nonlinear noise

At first sight, the nonlinear noise contributions seem quite
complicated to handle. Still, let us focus on the correlation
function C�t�= �h�q , t�h�q� ,0�	: multiplying Eq. �C8� by
h�q� ,0� and averaging over the thermal noise leads to the
following equation:

�tC�t� = −
1


q
C�t� − i�̇ef f��h�t� 
 �qxh�t���h�0�	

+ ���t�h�0�	 + �q · ��q�1�t�� 
 h�t��h�0�	

− ��q 
 ��q�2�t�� 
 h�t��� · ezh�0�	 . �D4�

�For the sake of clarity, we have dropped the q dependence
of h.� Now, the causality principle implies that the deforma-
tion at time t=0 cannot be coupled to the random force act-
ing at time t�0. It is therefore obvious that ���t�h�0�	=0, an
argument commonly invoked in the context of Brownian mo-
tion. But the same argument applies to the last two contribu-
tions as well, leading to the conclusion that nonlinear noise
terms are irrelevant as far as correlations are concerned.

To check this point, we follow the perturbative scheme
developed in the above section and express the solution of
Eq. �C8� as a Dyson equation similar to Eq. �D3�. Although

the expression of h̃q involves many terms, additional contri-

butions to �h̃qh̃q�	 actually vanish �either because they in-
volve an odd number of noise terms or because of the van-
ishing cross-correlations between �, �1, and �2�. It can thus
be shown explicitly that nonlinear noise terms do not con-
tribute to the modification of the spectrum at the order con-
sidered in this work.
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